Interfacing Pythia with URQMD – a hadronic rescattering framework

Christian Bierlich, MCnet 2020 @ Durham

With: da Silva, Serenone, Chinellato, & Takahashi arXiv:2002.10236

The what and the why?

What?

Interface Pythia8/Angantyr with a model for hadronic rescatterings.

Why?

Well established effect, solid physics basics – is it reasonable to sweep it under the rug?

Why MCnet?

The results were quite surprising! And might be interesting for non-HI physicists.

Current Pythia efforts (pp: Sjöstrand & Utheim, 2005.05658, HI: WiP)

Outline:

- 1. Hadrons hit each other in the final state.
- 2. This has larger effects than we thought.

The big picture

Side-by-side view of two different realities.

Note in particular:

- String decay faster than plasma decay
- A Pb-Pb collision is very large!

But!

- Hard scatterings are the same.
- So is the physics of the hadronic phase.

And peripheral Pb-Pb collisions are comparable to pp collisions.

Hadron production: Where and when?

Key input, hadron production vertices. (Ferreres-Solé & Sjöstrand, 1808.04619)

Some details about the interface

Heavy flavours, leptons and photons **unknown to URQMD.**

URQMD handles **99.8%** of all decays, and **100%** of all rescatterings.

Simple ascii-based interface, could be improved. *This could be a job for HepMC3.*

A very dense hadron-soup

Earlier fragmentation means **denser final state**.

A normal heavy ion treatment of pp would give little effect.

Harder particles fragment further away

Hard particle production vertices are far away from the rest.

Mostly affects soft physics

For larger collision systems, relevant R becomes larger.

Charged particle spectra

Harder particles (\sim 5 GeV) pushed to lower pT.

Effect up to **10-20% in most periphera**l (pp like) Pb-Pb. Up to **60 % in central** Pb-Pb.

Clearly non-negligible for heavy ion physics.

Nuclear modification factor

In heavy ion physics, this is usually quantified as the modification vs. pp

$$R_{AA} = \frac{\mathrm{d}^2 N_{\mathrm{ch}} / \mathrm{d}p_{\perp} \mathrm{d}y\big|_{AA}}{N_{\mathrm{coll}} \,\mathrm{d}^2 N_{\mathrm{ch}} / \mathrm{d}p_{\perp} \mathrm{d}y\big|_{pp}},$$

The high-pT behavior not produced well by the model.

The **good agreement at intermediate pT** is worth studying further.

Looking closer at the modification

In particular the **yields on the away-side of jets are modified**.

Probably difficult to find a similar signature in pp – but similar to effects from Quark-Gluon Plasma models.

10

Hadrochemistry

Different rescatterings have different cross sections.

Some modeling, but **mostly parameterized data**.

Quite interesting for hadronization models, also in pp

Flow

Clear **double ridge** from hadronic rescatterings.

Quantitative argument against "long range in $\eta \sim$ early times".

Flow II

Not enough to describe data...

But leaves significantly more room for other models to play!

13

Summary

Well known physics effect **non-negligible in heavy ions**... ...**will it continue to be negligible in pp**?

My guess: People interested in soft QCD will need to start thinking about this!

A MC venturing into the heavy ion world will need to take this into account.

Also a project made possible by the existence of Open Source code!

For the future: Cleaner interfaces are needed, many codes (URQMD, SMASH, PYTHIA) already exist – perhaps more will come.

Thank you for the attention!