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Section I

Exercise 1 Toy model of rubber

One dimensional toy model of rubber. A chain consists of N � 1 links each of length a. The
links lie along the x-axis. The chain may double back on itself and all chain configurations
have the same energy. Let L be the end-point difference. Show that the entropy for |L| � Na
is given by:

S ≈ kBN ln 2− kBL
2

2Na2
.

Suppose the chain is stretched with a tension f . What is the relation between L and f?

Let the number of links in the chain which points in the positive1 direction be denoted n.
Then the length of the chain is: L = a(2n − N). From this it is (for later use) useful to
notice that:

n =
N

2
(1 + x) , N − n =

N

2
(1− x) with: x =

L

Na
. (1)

We need to count the ways the chain can be arranged such that n links points is the positive
direction. This is given by the binomial coefficient:

Ω(N,n) =
N !

n!(N − n)!
(2)

The entropy is thus (using Stirling’s approximation, assuming N � 1):

S

kB
= ln Ω ≈ N lnN − n lnn− (N − n) lnN − n = N ln

N

N − n
+ n ln

N − n
n

= −N ln 2−N ln 1− x− n ln
1 + x

1− x
.

(3)

Since we are in the limit where x = L
Na is a small number, we can Taylor expand the two

logarithms keeping only terms up to two powers of x, such that:

n ln
1 + x

1− x
≈ 2nx and N ln 1− x ≈ −Nx− Nx2

2
. (4)

Inserting into equation (3), and inserting the expressions for n and x we get:

S

kB
≈ N ln 2 +Nx+

Nx2

2
− 2nx = N ln 2− L2

2Na2
, (5)

1Arbitrary choice of positive direction.
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which is the desired result.

We know from Chandler p. 10 that ((∂S/∂X)E = −f/T ). As X = L we get:

f = −T
(
∂S

∂L

)
E

=
kBTL

Na2
. (6)

With direct proportionality between f and L, this has the form of Hooke’s law.

Exercise 2 Phase transition

Consider a one-component system at liquid-gas equilibrium. Assume that the gas can be
treated as ideal. Show that along the coexistence line in the (p, T ) plane, the molar volume
of the gas phase vg, obeys the relation:

dvg
dT
≈ R

p

(
1− L

RT

)
,

where L = T (sg − sl) is the latent heat (sg and sl are the entropies per mole of the gas and
liquid phases respectively).

Hint: Show that dp/dT ≈ pL/RT 2.

The Clausius-Clayperon equation is:

dp

dT
=

∆s(T )

∆v(T )
=

1

T

L

∆v(T )
(7)

As we study a gas/liquid phase transition, we can assume that vg � vl, such that ∆v =
vg − vl ≈ vg. Assuming furthermore that the gas can be described by the equation of state
for an ideal gas, we get:

∆v ≈ vg =
RT

p
(8)

Inserting into equation (7), we get the relation:

dp

dT
≈ pL

RT 2
(9)

We now take on the desired relation. Rearranging equation (7) yields:

vg ≈
1

T

dT

dp
L. (10)
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Differentiating wrt. T (using equation (9) and the usual quotient rule) yields:

dvg
dT
≈ R

p− dp
dT T

p2
≈
R− L

T

p
=
R

p

[
1− L

RT

]
, (11)

which is the desired result. The approximate status of the result enter because equation
(9) only holds approximately.

Exercise 3 Heat capacity relations

Show that:

Cp − Cv = −T
(
∂V

∂p

)
T,n

(
∂p

∂T

)2

V,n

First two mathematical results are shown. We take z to be a function of x and y:

z = z(x, y), then dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy. (12)

If z in equation (12) is constant, then dz = 0, making:(
∂z

∂x

)
y

(dx)z = −
(
∂z

∂y

)
x

(dy)z ⇔
(
∂x

∂y

)
z

= −
(
∂z

∂y

)
x

(
∂x

∂z

)
y

, (13)

which constitutes the first of the two results.

If x in equation (12) is taken to be a function of yet another variable, say w, and z is
no longer constant we can write:(

∂z

∂x

)
w

=

(
∂z

∂x

)
y

+

(
∂z

∂y

)
x

(
∂y

∂x

)
w

, (14)

which constitutes the second result.

We can now take on the physics. To relate Cp and Cv we view entropy as a function of T ,
V and n: S = S(T, V, n). For constant n we have:

dS =

(
∂S

∂T

)
V,n

dT +

(
∂S

∂V

)
T,n

dV. (15)
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Using equation (14) (with x = T , y = V , z = S and w = p) and the definitions of Cp and
Cv, this becomes: (

∂S

∂T

)
p

=

(
∂S

∂T

)
V,n

+

(
∂S

∂V

)
T,n

(
∂V

∂T

)
p,n

⇔

Cp − Cv = T

(
∂S

∂V

)
T,n

(
∂V

∂T

)
p,n

.

(16)

Using equation (13) on the RHS, this becomes the desired result:

Cp − Cv = −T
(
∂V

∂p

)
T,n

(
∂p

∂T

)2

V,n

. (17)

Exercise 4 Van der Waals equation

Consider a one component liquid-gas system described by the van der Waals equation:

p =
RT

v − b −
a

v2
(v = V/n).

(a) Show that the critical point (where ∂p/∂vT = (∂2p/∂v2)T = 0) is given by

vc = 3b , RTc =
8a

27b
, pc =

a

27b2

Calculate a and b for water and argon (in physical units) given that (Tc, pc) = (374◦C, 218atm)
for water and (Tc, pc) = (−122◦C, 48.1atm) for argon.

(b) Show that for v = vc:

Cp − Cv =
nRT

T − Tc
.

(c) Show that for T = Tc and small |v − vc|:

p− pc ≈ −
3pc
2v3c

(v − vc)3.

(a) The first and second derivatives wrt. v provides the two equations:(
∂p

∂v

)
T

= 0 :
2a

v3
− RT

(v − b)2
= 0,(

∂2p

∂v2

)
T

= 0 : −6a

v4
+

2RT

(v − b)3
= 0.

(18)
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The two equations are solved for v and RT :

vc = 3b , RTc =
8a

27b
, (19)

and the result of equation (19) is inserted in van der Waals equation to yield:

pc =
RTc
vc − b

− a

v2c
=

a

27b2
. (20)

Rearranging the expressions in equation (19) and (20) yields expressions for a and b:

a =
27

8

R2T 2
c

pc
, b =

RTc
pc

. (21)

Using m3 as the unit for volume, [v] = [V ]/[n] = m3/mol. Changing the unit for
temperature to Kelvin, and keeping atm as the unit for pressure, the appropriate gas
constant is: R = 8.206 · 10−5m

3atm
K mol . The constants a and b are then:

Water : (Tc, pc) = (647.15K, 218atm) :

a = 4.4 · 10−5
m6atm

mol2
, b = 2.4 · 10−4

m3

mol

(22)

Argon : (Tc, pc) = (151.15K, 48.1atm) :

a = 1.1 · 10−5
m6atm

mol2
, b = 2.6 · 10−4

m3

mol

(23)

(b) The result of exercise 4 will be used. As v = V/n, and using the rule of inverse
derivatives, this can be rewritten:

Cp − Cv = −T
(
∂V

∂p

)
T,n

(
∂p

∂T

)2

V,n

= −n · T 1(
∂p
∂v

)
T,n

(
∂p

∂T

)2

V,n

. (24)

By differentiating van der Waals equation, we get:(
∂p

∂v

)
T,n

=− RT

(v − b)2
+

2a

v3
,(

∂p

∂T

)2

V,n

=
R2

(v − b)2
.

(25)

Upon inserting v = vc = 3b, (using RTc = 8a
27b) this becomes:(

∂p

∂v

)
T,n

∣∣∣∣
v=vc=3b

=
RTc −RT

4b2
,(

∂p

∂T

)2

V,n

∣∣∣∣
v=vc=3b

=
R2

4b2
.

(26)
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Inserting in equation (24) yields:

Cp − Cv = −n · T 4b2

RTc −RT
R2

4b2
=

nRT

T − Tc
, (27)

which is the desired result.

(c) We put T = Tc in the equation of state, and rewrite in terms of only v, a and b:

p(T = Tc) =
8a

27b(v − b)
− a

v2
. (28)

This expression is Taylor expanded around v = vc = 3b (the calculation is done in
Mathematica), keeping terms up to (v − 3b)3. Then:

p ≈ a

27b2
− a(v − 3b)3

486b5
. (29)

Using the expressions for vc and pc, and subtracting pc on both sides, this becomes
the desired result:

p− pc ≈ −
3pc
2v3c

(v − vc)3. (30)
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Section II

Exercise 1 Transfer Matrix – Dihedral angle-model

Consider a linear chain of N beads. All bond lengths and bond angles are assumed fixed, so
the shape of the chain is determined by N − 3 dihedreal angles φi. Suppose each φi has three
possible values: t (trans) g− (gauche-) and g+ (gauche+). Suppose further the energy is given
by:

E = E(φi, ..., φN−3 =

N−3∑
i=1

e1(φi) +

N−4∑
i=1

e2(φi, φi+1),

where:

e1(φ) =

{
0 if φ = t,

ε (> 0) if φ = g−, g+,

and:

e2(φ, φ′) =

{
∞ if (φ, φ′) = (g−, g+), (g+, g−),

0 otherwise.

(a) Let Q denote the canonical partition function. Show that:

lim
N→∞

lnQ

N
= ln

[
1

2
(1 + σ +

√
1 + 6σ + σ2)

]
,

where σ = e−ε/kBT .

(b) Let xt denote the fraction of dihedral angles that are in the t state. Find an expression
for xt as a function of σ in the limit N → ∞. Let x0t denote the same fraction in the
absence of the e2 terns [e2(φ, φ′) = 0 for all φ, φ′]. Plot xt and x0t as functions of kBT/ε.

(a) The canonical partition function is given by:

Q =
∑

φ1,...,φN−3

exp {−βE} =
∑

φ1,...,φN−3

exp

{
−β

[
N−3∑
i=1

e1(φi) +

N−4∑
i=1

e2(φi, φi+1)

]}
=

∑
φ1,...,φN−3

c · exp

{
−β

[
N−4∑
i=1

e1(φi) + e2(φi, φi+1)

]}
,

(31)

with c = exp(−βe1(φN−3)) being the boundary term neccesary to put the two terms
of the energy in the same summation. The sum over the N − 4 beads will now
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be written as a product of matrix elements, in order to utilize the transfer matrix
method:

Q =
∑

φ1,...,φN−3

c ·
N−4∏
i=1

exp {−β(e1(φi) + e2(φi+1))} =
∑

φ1,...,φN−3

c ·
N−4∏
i=1

Pφi,φi+1
. (32)

Now Pφi,φi+1
describes matrix elements of a 3 × 3 matrix. These can be readily

calculated from the expression above:

φi, φi+1 E Pφi,φi+1

t, g+ 0 1
t, g− 0 1
t, t 0 1
g+, t ε σ
g+, g− ∞ 0
g+, g+ ε σ
g−, t ε σ
g−, g− ε σ
g−, g+ ∞ 0

Or equivalently in a matrix form:

Pφi,φi+1
=

1 1 1
σ 0 σ
σ σ 0

 (33)

This matrix can of course be written in many different ways – the end result is
independent of representation as:

Q/c = tr(PN−4) = λN−41 + λN−42 + λN−43 , (34)

where λ1,2,3 are the eigenvalues of P . These can be calculated from equation (33),
by solving the characteristic polynomium:

Π(λ) = det(P − λ1) = 0⇔ −λ3 + (1 + 2σ)λ2 − σ2λ− σ2 = 0. (35)

We can easily guess the first solution λ = σ, and factorize it out to solve for the two
others:

Π(λ) =(λ− σ)(−λ2 + (1 + σ)λ+ σ) = 0⇒

λ =
1

2
[1 + σ ±

√
1 + 6σ + σ2]

(36)
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In the thermodynamic limit N →∞, Q will be dominated by the largest of the three
eigenvalues: λ+ = 1

2 [1 + σ +
√

1 + 6σ + σ2], and the boundary term c vanishes as
well. From equation (34) we therefore get the desired result:

lim
N→∞

lnQ

N
= ln

[
1

2
(1 + σ +

√
1 + 6σ + σ2)

]
. (37)

(c) The fraction xt is connected to the similar fraction for angles in the g± state as
< xt >= 1− < xg >. These quantities are introduced via. the expectation values of
ng and nt, which are functions that simply counts the number of angles in a given
state. Hence:

e−βE = e−βngε+... ≈ e−βngε (38)

where the omitted parts are surpressed by factors of eβ∞.

We now use that:

< ng >= Q−1
∑
ν

nge
−βngε = Q−1

∂Q

∂−βε
= −∂ ln(Q)

∂(βε)
, (39)

and thus (in the large N limit):

< xt >=1− < xg >= 1− < ng >

N − 3
≈ 1− < ng >

N
= 1 +

1

n

∂ ln(Q)

∂(βε)
=

1 +
∂

∂(βε)
ln

[
1

2
(1 + σ +

√
1 + 6σ + σ2)

]
.

(40)

The differentiation is carried out to produce an expression in terms of σ:

< xt >=
3 + 1

σ

(
1 +
√

1 + 6σ + σ2
)

6 + σ +
√

1 + 6σ + σ2
(

1 +
√

1 + 6σ + σ2
) . (41)

The fraction x0t is somewhat easier, as the partition function is now just calculated
by standard means:

Q =
∑
ν

e−βE = (2e−βε + 1)N . (42)

And then:

< x0t >=1 +
1

N

∂ lnQ

∂(βε)
= 1 +

∂

∂(βε)

[
ln(2e−βε + 1)

]
=

1

2σ + 1
.

(43)

The two fractions are plotted in figure 1 as a function of βε. Notice that they share
the same behaviour as going to 1 for large values of βε, but that the one (the red)
including the interaction part, does it faster.
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Figure 1: The fractions < xt > (red) and < x0t > (blue) as function of βε.

Exercise 2 Renormalization Group – 1D q-state Potts model

The partition function of the one-dimensional q-state Potts model at zero external field (integer
q ≤ 2) is given by :

Q(K,N) =

q∑
s1=1

...

q∑
sN=1

exp

[
K

N∑
i=1

δ(si, si+1)

]
,

where δ(s, s′) = 1 if s = s′ and δ(s, s′) = 0 otherwise. The boundary conditions are assumed
to be periodic (sN+1 = s1).

(a) Show by summing over every second spin si(i = 2, 4, ...) thatQ(K,N) = f(K)N/2Q(K′, N/2)
where:

f(K) = q + 2(eK − 1),

K′ = ln

(
1 +

(eK − 1)2

q + 2(eK − 1)

)
.

Hint : exp[Kδ(s, s′) = 1 + δ(s, s′)(eK − 1)].

(b) Decide based on the relation K′ = K′(K) whether or not the model exhibits a phase
transition at some finite K′ = Kc.
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(c) Use the relation K′ = K′(K) to show that the spin-spin correlation length ξ for large K
behaves as:

ξ(K) ∝ eK .

(a) In order to sum out all even spins, the partition function is rewritten in even-spin
terms:

Q =

q∑
s1,...,sN

exp(Kδ(s1, s2) +Kδ(s2, s3))︸ ︷︷ ︸
Even-spin term

× exp(Kδ(s3, s4) +Kδ(s4, s5))︸ ︷︷ ︸
Even-spin term

×... (44)

We can now look at one term at a time, summing over the appropriate even si, here
s′, with sa = s′ − 1 and sb = s′ + 1 being it’s two, neighboring, odd spins:

q∑
s′=1

exp(Kδ(sa, s
′) +Kδ(s′, sb)) =

q∑
s′=1

(1 + δ(sa, s
′)(eK − 1))(1 + δ(sb, s

′)(eK − 1) =

q∑
s′=1

1 + δ(sa, s
′)(eK − 1) + δ(sb, s

′)(eK − 1) + δ(sa, s
′)δ(sb, s

′)(eK − 1)2 =

q + 2(eK − 1) + δ(sa, sb)(e
K − 1)2.

(45)

We have now summed out every other degree of freedom, and now wish to obtain
a Kadanoff transformation to find the quantities f(K) and K ′. These will be the
solution of:

q + 2(eK − 1) + δ(sa, sb)(e
K − 1)2 = f(K) exp(K ′δ(sa, sb)), (46)

for all sa and sb. The quantities f(K) and K ′ gives two degrees of freedom, and
are found by considering the two cases: sa = sb and sa 6= sb: The latter gives f(K)
directly, since both δ-functions in equation (46) becomes zero and:

f(K) = q + 2(eK − 1). (47)

The case where sa = sb gives:

q + 2(eK − 1) + (ek − 1)2 = f(K) + f(K)(eK
′−1), (48)

and K ′ is found by inserting the expression for f(K) :

(eK − 1)2 = (q + 2(eK − 1))(eK
′ − 1)⇔ K ′ = ln

[
1 +

(eK − 1)2

q + 2(eK − 1)

]
, (49)

which is the desired result.
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(b) A system exhibits a phase transition if there exists a finite Kc such that Kc = K ′c (a
fixed point). Using K ′ = K ′(K):

K ′c = Kc = ln

[
1 +

(eKc − 1)2

q + 2(eKc − 1)

]
⇔ Kc = ln(1− q). (50)

As q is an integer larger than or equal to two, there exists no fixed points for finite
Kc, and hence no phase transitions.

(It is, however, worthwhile to note that the fixed points at K = 0 and K = ∞ are
retained.)

(c) As the renormalization takes away half of the spins, the correlation length scales as:

ξ′ =
ξ

2
⇒ ξ(n) =

ξ(0)

2n
. (51)

Where the number in superscript indicates how many times the recursion relation
have been applied. From the relation K ′ = K ′(K) we know that in the large K limit:

K ′ = K − ln 2⇒ K(n) = K − n ln 2. (52)

Inserting the above expression for n in equation (51), we get:

ξ(n)(K) =
ξ(0)

2n
∝ 1

2−K/ ln 2
= eK . (53)

Exercise 3 Mean Field Theory – Three State Clock Model

The three-state clock model is a lattice spin model where each spin ~si = (sxi, syi)(i = 1, ..., N)
is a two-dimensional unit vector with three possible orientations: (1, 0) and (−1/2,±

√
3/2).

At zero external field the energy function is given by:

E = −1

2

N∑
i,j=1

Jij~si~sj ,

where Jij = J if i and j are nearest neighbors and Jij = 0 otherwise. Suppose each site has
z nearest neighbors and that J > 0. The mean-field approximation can be defined by the
ansatz EMF = −

∑N
i=1 hsxi.

(a) Show that s =< sxi >MF is given by:

s =
eβh − e−βh/2

eβh + 2e−βh/2
, (β = 1/kBT ),

and that the mean-field free energy AMF can be written as:

βAMF

N
= − ln 3 +

2

3
(1− s) ln(1− s) +

1

3
(1 + 2s) ln(1 + 2s)− zJβ

2
s2

13



(b) The mean-field analysis predicts that the model exhibits an order-disorder phase tran-
sistion at some β = βc. Determine zJβc (a numerical solution is sufficient).

(c) Determine if the predicted phase transistion is of the first or second order.

(a) Write down the single spin Boltzmann distribution:

p(sxi) =
e−βEMF (sxi)∑
sxi
e−βEMF (sxi)

=
eβhsxi

eβh + 2e−βh/2
. (54)

Then the desired quantity s is:

s =
∑
sxi

p(sxi)sxi =
eβh − e−βh/2

eβh + 2e−βh/2
, (55)

which is the desired result. For the free energy it is used that:

− βA = lnQ = ln(QMF < exp(−β∆E) >MF ). (56)

Here −β < ∆E >MF is calculated analogously to the procedure in Chandler p. 138,
such that:

− β < ∆E >MF= βN

(
1

2
Jzs2 − hs

)
. (57)

The mean field partition function is:

QMF =
∑

s1,...,sn

exp(−βEMF ) =
∑

s1,...,sn

exp(βh
N∑
i=0

sxi) = (eβh + 2e−βh/2)N , (58)

and thus:

−βAMF

N
= ln(eβh + 2e−βh/2)− βhs+

1

2
βJzs2

= βh(1− s) + ln(1 + 2e−3βh/2) +
1

2
βJzs2.

(59)

We now have AMF in terms of both s and h, but clearly one of the parameters can
be eliminated using equation (55). From this we get:

e−3βh/2 =
1− s
2s+ 1

and βh =
2

3
(ln(2s+ 1)− ln(1− s)) . (60)
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Figure 2: Free energy (left) and it’s first derivative for βJz = {0.5, 1, 1.5, 2} (blue, red,
yellow, green).

Inserting these two expressions in equation (59), we get:

βAMF

N
= −2

3
(ln(2s+ 1)− ln(1− s))(1− s)− ln

(
1 + 2

1− s
2s+ 1

)
− 1

2
βJzs2, (61)

which, after a little bit of algebra becomes the desired result:

βAMF

N
= − ln 3 +

2

3
(1− s) ln(1− s) +

1

3
(1 + 2s) ln(1 + 2s)− zJβ

2
s2 (62)

(b) Changing the parameter βJz in equation (61), and plotting the free energy as a
function of s for different values, one can see indications of a phase transition. This
is done in figure 2 (left) for βJz = {0.5, 1, 1.5, 2} (blue, red, yellow, green). It is
seen that the phase transition occurs somewhere between βJz = 1.5 and 2. The
numerical solutions is found by looking at the derivative (figure 2, same colours)
of the free energy, and calculating the value of βJz where we go from one to two
intersections with the primary axis. This happens at βcJz = 1.83.

(c) Plotting the first and second derivative of the free energy for β = βc, (see figure 3 –
first derivative is blue, second derivative is red) reveals that while the first derivative
is continuous, the second derivative is not. The phase transition is therefore of second
order.
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Figure 3: First (blue) and second (red) derivative of the free energy, for β = βc.
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